Lesson Plan Name of the Faculty: Dr. PARMJEET KAUR **Discipline: Applied Science and Humanities (Diploma)** Semester: 1st Subject: Applied Physics-I, Applied Physics Lab-I Work Load (Lecture/Practical) per week (in hours): Lectures- $\bf 4$, Practical - $\bf 2$ | | Theory | | | Practical | | |-----------------|------------------|---|-----------------|--|--| | Week | Lecture
day | Topic (including assignment/test) | Practical day | Торіс | | | 1 st | 1 st | Physical quantities Units - fundamental and derived units | 1 st | Familiarisation with Least count of vernier caliper | | | | 2 nd | systems of units- (FPS, CGS and SI units) | | | | | | 3 rd | Dimensions and dimensional formulae of physical quantities (area, volume, velocity, acceleration, momentum, | | | | | | 4 th | force, impulse, work, power, energy, surface tension, stress, strain, moment of inertia | | | | | 2 nd | 5 th | Principle of homogeneity of dimensions,
Limitations of dimensional analysis | 2 nd | Familiarisation
with least
count of screw
gauge | | | | 6 th | Dimensional equations and dimensional analysis | | | | | | 7 th | Applications of dimensional equations, conversion from one system of units to other for density, force, work, energy, velocity and acceleration | | | | | | 8 th | checking of correctness and derivation of formulas (potential energy, kinetic energy, pressure) | | | | | | 9 th | checking of correctness and derivation of formulas (potential energy, kinetic energy, pressure) | 3 rd | Familiarisation with least count of spherometer | | | | 10 th | TEST | | | | | 3 rd | 11 th | Scalar and vector quantities – examples, representation of vector | | | | | | 12 th | Addition of Vectors, Triangle and Parallelogram law (Statement only) | | | | | 4 th | 13 th | Scalar and Vector Product(statement and formula only) | | To find
diameter of
solid cylinder
using a vernier
caliper | | | | 14 th | Force, Rectangular components, Resolution of force | 4 th | | | | | 15 th | Newton's laws of motion(Statement and examples), Momentum, Conservation of linear momentum(statement only),its applications | | | | | | 16 th | recoil of gun., Impulse and its examples | | | | | 5 th | 17 th | Circular motion, definition of angular displacement, angular velocity | 5 th | To find the diameter of | | | | 18 th | Angular acceleration, frequency, time period | | wire using | | | | 19 th | Relation between linear and angular velocity, | | screw gauge | | | | | linear acceleration and angular Acceleration | | | |------------------|------------------|---|------------------|---| | | 20 th | Centripetal and centrifugal forces(definition and formula only) | | | | 6 th | 21 st | Application of centripetal force such as Banking of roads(derivation of angle of banking) | 6 th | To find thickness of paper using screw gauge. | | | 22 nd | REVISION | | | | | 23 rd | TEST | | | | | 24 th | Work: and its units, types of work (zero work, positive work and negative work with examples) | | | | 7 th | 25 th | Energy and its units: Kinetic energy and potential energy with examples and their derivation | 7 th | To determine
the thickness
of glass strip
using a
spherometer | | | 26 th | Energy and its units: Kinetic energy and potential energy with examples and their derivation | | | | | 27 th | Principle of conservation of mechanical energy for freely falling bodies | | | | | 28 th | examples of transformation of energy | | | | | 29 th | Power (definition, formula and units) | | To determine
the thickness
of glass strip
using a
spherometer | | | 30 th | REVISION | | | | 8 th | 31 st | TEST | 8 th | | | 0 | 32 nd | Rotational motion with examples | 0 | | | 9 th | 33 rd | Definition of torque and angular momentum and their examples | 9 th | To verify parallelogram law of forces | | | 34 th | Conservation of angular momentum (quantitative) and its examples | | | | | | Moment of inertia and its physical significance | | | | | 36 th | radius of gyration (definition, derivation and | | | | | | formula). | | | | | 37^{th} | REVISION | 10 th | To verify parallelogram law of forces | | 10 th | 38 th | TEST | | | | | 39 th | Definition and types of stress and strain | | | | | 40 th | Hooke's law | | | | | 41 st | different types of module of elasticity | 11 th | To determine
force constant
of spring using
Hooke's law | | | 42 nd | Pressure: definition, its units, atmospheric pressure | | | | 11 th | 43 rd | gauge pressure, absolute pressure | | | | | 44 th | Surface tension: definition, its units, applications of surface tension | | | | 12 th | 45 th | effect of temperature on Surface tension | | | | | 46 th | Viscosity: definition, units, effect of temperature on viscosity | 12 th | To determine force constant | | | 47 th | Fluid motion, stream line and turbulent flow. | | of spring using
Hooke's law | | | 48 th | REVISION | | | | | 49 th | TEST | | | | | 50 th | Difference between heat and temperature | 13 th | REVISION | | 13 th | 51 st | Modes of transfer of heat (Conduction, convection and radiation with examples) | | | | | 52 nd | Properties of heat radiation | | | | 14 th | 53 rd | Different scales of temperature and their relationship | 14 th | REVISION | | | 54 th | Principles of measurement of temperature | | | |------------------|------------------|--|------------------|----------| | | 55 th | Thermal conductivity(definition) | | | | | 56 th | co-efficient of thermal conductivity | | | | 15 th | 57 th | REVISION | 15 th | REVISION | | | 58 th | TEST | | | | | 59 th | TEST | | | | | 60 th | TEST | | |